CONCEPTUAL MODEL FOR GENERATION OF XBRL INSTANCES
DOI:
https://doi.org/10.4301/S1807-1775202522007Palavras-chave:
XBRL, XBRL Processor, XBRL Data Integration, XBRL Data Mapping, XML.Resumo
The need to integrate eXtensible Business Reporting Language (XBRL) technology with data storage technologies is growing continuously. The growth in the use of eXtensible Business Reporting Language (XBRL) technology in the context of financial reporting on the internet has occurred due to its advantages and benefits or due to government impositions e.g. the Brazilian Public Sector Accounting and Tax Information System – Siconfi, which requires the delivery of accounting and financial information from the Federated States and Municipalities in XBRL. The growth in use has increased the need for solutions that allow the easy use of the language, in order to generate XBRL instances with the organization's data stored in relational databases, NoSQL or even in CSV files. This work proposes an open-source Extract, Transform and Load (ETL) conceptual solution planned in two stages of execution in order to facilitate maintenance, evolutions and the possibility of extension to understand the most diverse taxonomies XBRLReferências
Alami, A. El, & Bahaj, M. (2017). Framework for a complete migration of relational databases to other types of databases(object oriented OO, object-relational OR, XML). In Proceedings of IEEE/ACS International Conference on Computer Systems and Applications, AICCSA (pp. 1–7). https://doi.org/10.1109/AICCSA.2016.7945763
Asimadi, E., Reiff-Marganiec, S., Donnelly, B., Baker, J., & Fang, D. (2017). Semantic approach to financial data integration for enabling new insights. CEUR Workshop Proceedings, 1890, 1–15.
Bai, L., Yan, L., Ma, Z. M., & Xu, C. (2015). Incorporating fuzziness in spatiotemporal XML and transforming fuzzy spatiotemporal data from XML to relational databases. Applied Intelligence, 43(4), 707–721. https://doi.org/10.1007/s10489-015-0677-7
Beelitz, C. (2017). The dilemma of XBRL-XML versus XBRL-JSON regarding linkage of financial information. CEUR Workshop Proceedings, 1890, 1–11.
Belev, I. (2019). Alternatives for Storing and Validating XBRL Data. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 60(1), 191–201. Retrieved from https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/5289
Bikakis, N., Tsinaraki, C., Stavrakantonakis, I., Gioldasis, N., & Christodoulakis, S. (2015). The SPARQL2XQuery interoperability framework: Utilizing Schema Mapping, Schema Transformation and Query Translation to Integrate XML and the Semantic Web. World Wide Web, 18(2), 403–490. https://doi.org/10.1007/s11280-013-0257-x
Bragança, H. A., Caetano, P., & Bernadino, N. (2022). Data Mapping for XBRL : A Systematic Literature Review. American Academic Scientific Research Journal for Engineering, Technology, and Sciences, 90, 124–143. Retrieved from http://asrjetsjournal.org/
Bragança, H. A., Ladislau, S. P., da Silva, M. A. P., & da Silva, P. C. (2019). XBRL-ETL ENGINE: A DATA TRANSFORMATION TOOL FOR XBRL-SICONFI TAXONOMY Motor XBRL-ETL: Uma ferramenta para transformação de dados baseada na taxonomia XBRL-SICONFI, (1), 1–19. https://doi.org/10.5748/16CONTECSI/XBR
CEBS. (2023). European Committee of Banking Supervisors. Retrieved from https://www.bankingsupervision.europa.eu/home/html/index.en.html
Cerqueira, M. G. De, & Silva, P. C. Da. (2021). A survey of XBRL adoption impact on financial software development processes and software quality. International Journal of Business Information Systems, 37(2), 263–286. https://doi.org/10.1504/IJBIS.2021.115366
Cerqueira, M. G., & Silva, P. C. da. (2016). Coming Impacts of Xbrl Adoption in Financial Software Development Processes and Software Quality Factors: a Systematic Mapping. Proceedings of the 13th CONTECSI International Conference on Information Systems and Technology Management, 13, 3185–3209. https://doi.org/10.5748/9788599693124-13contecsi/ps-4103
Chen, Y. (2018). Worst case optimal joins on relational and XML data. In Proceedings of the ACM SIGMOD International Conference on Management of Data (pp. 1833–1835). New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/3183713.3183721
Dermeval, D., Coelho, J. A. P. de M., & Bittencourt, I. I. (2019). Mapeamento Sistemático e Revisão Sistemática da Literatura em Informática na Educação. Metodologia de Pesquisa Em Informática Na Educação: Abordagem Quantitativa de Pesquisa (Volume 2), (2), 1–26. Retrieved from http://metodologia.ceie-br.org/livro-2
Dimou, A., Sande, M. Vander, Colpaert, P., Verborgh, R., Mannens, E., & Van De Walle, R. (2014). RML: A generic language for integrated RDF mappings of heterogeneous data. CEUR Workshop Proceedings, 1184.
Doi, Y., & Toyama, M. (2019). ToT for CSV: Accessing Open Data CSV Files through SQL. In Proceedings of the 21st International Conference on Information Integration and Web-Based Applications & Services (pp. 423–429). New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/3366030.3366130
Dunce, M. M. M., Silva, P. C. da, & Viana, S. (2013). Similarity Evaluation Between Concepts Represented By Xbrl, 3933–3963. https://doi.org/10.5748/9788599693094-10contecsi/ps-457
FERC. (2023). Federal Energy Regulatory Commission. Retrieved from https://www.ferc.gov/
Frozza, A. A., & Mello, R. dos S. (2020). JS4Geo: a canonical JSON Schema for geographic data suitable to NoSQL databases. GeoInformatica, 24(4), 987–1019. https://doi.org/10.1007/s10707-020-00415-w
Gamal, M. M., Ahmed, A. E. A., Hefny, H. A., & El-Moneim, M. A. (2016). A literature survey on mapping between fuzzy XML databases and relational or object oriented databases. In Proceedings of 2015 IEEE World Conference on Complex Systems, WCCS 2015 (pp. 1–6). https://doi.org/10.1109/ICoCS.2015.7483293
Gray, G. L., & Miller, D. W. (2009). XBRL: Solving real-world problems. International Journal of Disclosure and Governance, 6(3), 207–223. https://doi.org/10.1057/jdg.2009.8
Jayashree, G., & Priya, C. (2020). Data Integration with XML ETL Processing. 2020 International Conference on Computer Science, Engineering and Applications, ICCSEA 2020, (March). https://doi.org/10.1109/ICCSEA49143.2020.9132936
Lazzari, L., & Farias, K. (2022). An exploratory study on the effects of pair programming. Proceedings of Make sure to enter the correct conference title from your rights confirmation emai (Conference acronym ’XX) (Vol. 1). Association for Computing Machinery. https://doi.org/10.1049/ic:20040395
Liu, D., Etudo, U., & Yoon, V. (2020). X-IM framework to overcome semantic heterogeneity across XBRL filings. Journal of the Association for Information Systems, 21(4), 971–1000. https://doi.org/10.17705/1jais.00626
Lyamin, A. V., & Cherepovskaya, E. N. (2018). XML-Relational mapping using production rule system. In 2017 Intelligent Systems Conference, IntelliSys 2017 (Vol. 2018-Janua, pp. 422–429). https://doi.org/10.1109/IntelliSys.2017.8324328
Maatuk, A. M., Ali, M. A., & Aljawarneh, S. (2015). An algorithm for constructing XML Schema documents from relational databases. In ACM International Conference Proceeding Series (Vol. 24-26-Sept). New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/2832987.2833007
Mao, J., & Ye, X. (2018). Relational schema and XML schema bidirectional mapping algorithm based on the intermediate object tree. In 2017 3rd IEEE International Conference on Computer and Communications, ICCC 2017 (Vol. 2018-Janua, pp. 2380–2383). https://doi.org/10.1109/CompComm.2017.8322961
Nassiri, H., Machkour, M., & Hachimi, M. (2017). Integrating XML and Relational Data. Procedia Computer Science, 110, 422–427. https://doi.org/10.1016/j.procs.2017.06.107
Nassiri, H., Machkour, M., & Hachimi, M. (2018). One query to retrieve XML and Relational Data. Procedia Computer Science, 134, 340–345. https://doi.org/10.1016/j.procs.2018.07.201
Navathe, E. &. (2013). Sistemas de Banco de Dados. Journal of Chemical Information and Modeling (Vol. 6ed).
Niewerth, M., & Schwentick, T. (2018). Reasoning About XML Constraints Based on XML-to-Relational Mappings. Theory of Computing Systems, 62(8), 1826–1879. https://doi.org/10.1007/s00224-018-9846-5
Petković, D. (2017a). JSON Integration in Relational Database Systems. International Journal of Computer Applications, 168(5), 14–19. https://doi.org/10.5120/ijca2017914389
Petković, D. (2017b). SQL/JSON Standard: Properties and Deficiencies. Datenbank-Spektrum, 17(3), 277–287. https://doi.org/10.1007/s13222-017-0267-4
Qtaish, A., & Ahmad, K. (2016). XAncestor: An efficient mapping approach for storing and querying XML documents in relational database using path-based technique. Knowledge-Based Systems, 114, 167–192. https://doi.org/https://doi.org/10.1016/j.knosys.2016.10.009
Roohani, S., Furusho, Y., & Koizumi, M. (2009). XBRL: Improving transparency and monitoring functions of corporate governance. International Journal of Disclosure and Governance, 6(4), 355–369. https://doi.org/10.1057/jdg.2009.17
Salem, R., Darmont, J., Boussaid, O., Salem, R., Darmont, J., Boussaid, O., … Boussa, O. (2017). Active XML-based Web data integration To cite this version : HAL Id : hal-01433718 Active XML-based Web Data Integration, 15(3).
Schmidt, A., Waas, F., Kersten, M., Florescu, D., Carey, M. J., Manolescu, I., & Busse, R. (2001). Why and how to benchmark XML databases. SIGMOD Record (ACM Special Interest Group on Management of Data), 30(3), 27–32. https://doi.org/10.1145/603867.603872
SICONFI. (2023). Secretaria do Tesouro Nacional. Retrieved from https://siconfi.tesouro.gov.br/siconfi/index.jsf
Silva, P. C., Silva, L., Santos, A., & Cruz, M. (2008). O Framework Xbrl. International Conference on Information Systems and Technology Management 5th, 4343–4365.
Soares, B. E., & Boscarioli, C. (2013). Modelo de Banco de Dados Colunar: Características, Aplicações e Exemplos de Sistemas. Escola Regional de Banco de Dados–Sociedade Brasileira de Computação (IX ERBD–SBC). Retrieved from https://turing.pro.br/anais/ERBD-2013/artigos/pesquisa/111410.pdf
Soares, C. S., Mallone, V., & Andrade, N. De. (2021). Gestão pública municipal e os processos internos determinantes para o envio da matriz de saldos contábeis.
Song, E., & Haw, S.-C. (2020). XML-REG: Transforming XML Into Relational Using Hybrid-Based Mapping Approach. IEEE Access, 8, 177623–177639. https://doi.org/10.1109/ACCESS.2020.3026006
Song, E., Haw, S. C., & Chua, F. F. (2019). Handling XML to relational database transformation using model-based mapping approaches. In 2018 IEEE Conference on Open Systems, ICOS 2018 (pp. 65–70). https://doi.org/10.1109/ICOS.2018.8632805
Spink, P., Arouca, F. L., & Teixeira, M. A. (2002). O Banco de Dados. Cadernos Gestão Pública e Cidadania, 7(22). https://doi.org/10.12660/cgpc.v7n22.52342
Subramaniam, S., Haw, S. C., & Kuan Hoong, P. (2010). S-XML: An efficient mapping scheme for storing XML data in a relational database. In ICACTE 2010 - 2010 3rd International Conference on Advanced Computer Theory and Engineering, Proceedings (Vol. 2, pp. V2-149-V2-153). https://doi.org/10.1109/ICACTE.2010.5579277
US-SEC. (2023). US-SEC. Retrieved from https://www.sec.gov/
W3C. (2023). W3C. Retrieved from https://www.w3.org/
XBRL. (2023). XBRL The Business Reporting Standard. Retrieved from https://xbrl.org/
Yaghmazadeh, N., Wang, X., & Dillig, I. (2018). Automated Migration of Hierarchical Data to Relational Tables Using Programming-by-Example. Proc. VLDB Endow., 11(5), 580–593. https://doi.org/10.1145/3177732.3177735
Yao, B. Bin, Özsu, M. T., & Khandelwal, N. (2004). XBench benchmark and performance testing of XML DBMSs. Proceedings - International Conference on Data Engineering, 20, 621–632. https://doi.org/10.1109/ICDE.2004.1320032
Zhu, H., Yu, H., Fan, G., & Sun, H. (2017). Mini-XML: An efficient mapping approach between XML and relational database. In Proceedings - 16th IEEE/ACIS International Conference on Computer and Information Science, ICIS 2017 (pp. 839–843). https://doi.org/10.1109/ICIS.2017.7960109