Big Data Quality Dimensions: A Systematic Literature Review
Abstract
Keywords
Full Text:
PDFReferences
Anstiss, S. (2012). Understanding data quality issues in dynamic organisational environments–a literaturereview. In Proceedings of the 23rd Australasian Conference on Information Systems 2012 (pp. 1-10). ACIS. http://dro.deakin.edu.au/eserv/DU: 30049090/anstiss-understandingdata-2012.pdf
Ardagna, D., Cappiello, C., Samá, W., & Vitali, M. (2018). Context-aware data quality assessment for big data. Future Generation Computer Systems, 89, 548-562. https://re.public.polimi.it/retrieve/handle/11311/1057520/295709/FutureGeneration.pdf
Batini, C., Rula, A., Scannapieco, M., & Viscusi, G. (2015). From Data Quality to Big Data Quality. Journal of Database Management, 26(1), 60-82. https://www.igi-global.com/article/from-data-quality-to-big-dataquality/140546
Becker, D., King, T. D., & McMullen, B. (2015). Big data, big data quality problem. In 2015 IEEE International Conference on Big Data (Big Data) (pp. 2644-2653). https://ieeexplore.ieee.org/abstract/document/7364064
Cai, L. & Zhu, Y., (2015). The Challenges of Data Quality and Data Quality Assessment in the Big Data Era.Data Science Journal, 14(2), 1-10. https://datascience.codata.org/articles/10.5334/dsj-2015-002/
Catarci, T., Scannapieco, M., Console, M., & Demetrescu, C. (2017). My (fair) big data. In 2017 IEEE International Conference on Big Data (Big Data) (pp. 2974-2979). https://ieeexplore.ieee.org/abstract/document/8258267
Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications. http://us.sagepub.com/en-us/nam/research-design/book255675
DAMA, (2013). Defining Data Quality Dimensions. Data Management Association (DAMA)/ UK Working Group. https://is.gd/dama_def_data_quality_dim
El Alaoui, I., Gahi, Y., & Messoussi, R. (2019). Big Data Quality Metrics for Sentiment Analysis Approaches. In Proceedings of the 2019 International Conference on Big Data Engineering (pp. 36-43). https://dl.acm.org/citation.cfm?id=3341629
Fu, Q., & Easton, J. M. (2017). Understanding data quality: Ensuring data quality by design in the rail industry. In 2017 IEEE International Conference on Big Data (Big Data) (pp. 3792-3799). https://ieeexplore.ieee.org/abstract/document/8258380
Hazen, B. T., Boone, C. A., Ezell, J. D. & Jones-Farmer, L. A., (2014). Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications. International Journal of Production Economics, 154, 72-80. https://www.sciencedirect.com/science/article/abs/pii/S0925527314001339
Kitchenham, B. (2004). Procedures for Performing Systematic Reviews. Keele University. http://www.it.hiof. no/~haraldh/misc/2016-08-22-smat/Kitchenham-Systematic-Review-2004.pdf
Kwon, O., Lee, N. & Shin, B. (2014). Data quality management, data usage experience and acquisition intention of big data analytics. International Journal of Information Management, 34, 387-394. https://www.sciencedirect.com/science/article/pii/S0268401214000127
Laranjeiro, N., Soydemir, S. N., & Bernardino, J. (2015). A survey on data quality: classifying poor data. In 2015 IEEE 21st Pacific rim international symposium on dependable computing (PRDC) (pp. 179-188). https://ieeexplore.ieee.org/abstract/document/7371861
Liu, J., Li, J., Li, W. & Wub, J. (2015). Rethinking big data: A review on the data quality and usage issues. Journal of Photogrammetry and Remote Sensing, 115, 134-142. https://www.sciencedirect.com/science/article/abs/pii/S0924271615002567
Rao, D., Gudivada, V. N., & Raghavan, V. V. (2015). Data quality issues in big data. In 2015 IEEE International Conference on Big Data (Big Data) (pp. 2654-2660). https://ieeexplore.ieee.org/abstract/document/7364065
Serhani, M. A., El Kassabi, H. T., Taleb, I., & Nujum, A. (2016). A hybrid approach to quality evaluation across big data value chain. In 2016 IEEE International Congress on Big Data (BigData Congress) (pp.418-425). IEEE.https://ieeexplore.ieee.org/abstract/document/7584971
Taleb, I., El Kassabi, H. T., Serhani, M. A., Dssouli, R., & Bouhaddioui, C. (2016). Big data quality:A quality dimensions evaluation. In 2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing, (pp. 759-765).
Taleb, I., Serhani, M. A., & Dssouli, R. (2018). Big data quality: A survey. In 2018 IEEE International Congress on Big Data (BigData Congress) (pp. 166-173). https://ieeexplore.ieee.org/abstract/document/8457745
Taleb, I., & Serhani, M. A. (2017). Big Data Pre-Processing: Closing the Data Quality Enforcement Loop. In 2017 IEEE International Congress on Big Data (BigData Congress) (pp. 498-501). https://ieeexplore.ieee.org/abstract/document/8029366
Taleb, N., (2013). Beware the big errors of ‘Big Data’. ttps://www.wired.com/2013/02/big-data-means-bigerrors-people/
The world’s most valuable resource is no longer oil, but data. (2017, May 6). The Economist. https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
Wang, R. Y. & Strong, D. M., (1996). Beyond Accuracy: What Data Quality Means to Data Consumers. Journal of Management Information Systems, 12(4), 5-33.
Woodall, P. et al., (2014). An Investigation of How Data Quality is Affected by Dataset Size in the Context of Big Data Analytics. In 19th International Conference on Information Quality (ICIQ), Xi’an, China. https://is.gd/Woodall_et_al_big_data
Woodall, P., Borek, A. & Kumar Parlikad, A., (2013). Data quality assessment: The Hybrid Approach. Information & Management, 50(7), 396-382. https://www.sciencedirect.com/science/article/abs/pii/S0378720613000517
Xie, C., Gao, J., & Tao, C. (2017). Big data validation case study. In 2017 IEEE third international conference on big data computing service and applications (BigDataService) (pp. 281-286). https://ieeexplore.ieee.org/abstract/document/7944952
Zhang, P., Xiong, F., Gao, J., & Wang, J. (2017). Data quality in big data processing: Issues, solutions and open problems. In 2017 IEEE Smart World, Ubiquitous Intelligence & Computing. (pp. 1-7). https://ieeexplore.ieee.org/abstract/document/8397554
DOI: http://dx.doi.org/10.4301/S1807-1775202017003
Copyright (c) 2020 Journal of Information Systems and Technology Management