A novel latent factor model for recommender system
Abstract
Keywords
Full Text:
PDFReferences
Alpaydin, E. (2004). Introduction to Machine Learning (Adaptive Computation and Machine Learning). The MIT Press.
Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical Analysis of Predictive Algorithms for Collaborative Filtering. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (pp. 43–52). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. Retrieved from http://dl.acm.org/citation.cfm?id=2074094.2074100
Goldberg, K., Roeder, T., Gupta, D., & Perkins, C. (2001). Eigentaste: A Constant Time Collaborative Filtering Algorithm. Information Retrieval, 4(2), 133–151. http://doi.org/10.1023/A:1011419012209
Jin, R., & Si, L. (2004). A bayesian approach toward active learning for collaborative filtering. Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, 278–285. Retrieved from http://dl.acm.org/citation.cfm?id=1036877
Koren, Y. (2008). Factorization Meets the Neighborhood: A Multifaceted Collaborative Filtering Model. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 426–434). New York, NY, USA: ACM. http://doi.org/10.1145/1401890.1401944
Koren, Y. (2009). The bellkor solution to the netflix grand prize. Netflix Prize Documentation, (August), 1–10. http://doi.org/10.1.1.162.2118
Koren, Y., & Bell, R. (2011). Advances in Collaborative Filtering. In Recommender Systems Handbook (pp. 145–186). http://doi.org/10.1007/978-0-387-85820-3
Kumar, R., Raghavan, P., Rajagopalan, S., & Tomkins, A. (2001). Recommendation Systems : A Probabilistic Analysis, 61, 42–61.
Ma, H., Zhou, D., Liu, C., Lyu, M. R., & King, I. (2011). Recommender Systems with Social Regularization. In Proceedings of the Fourth ACM International Conference on Web Search and Data Mining (pp. 287–296). New York, NY, USA: ACM. http://doi.org/10.1145/1935826.1935877
Paterek, A. (2007). Improving regularized singular value decomposition for collaborative filtering. In Proc. KDD Cup Workshop at SIGKDD’07, 13th ACM Int. Conf. on Knowledge Discovery and Data Mining (pp. 39–42). Retrieved from http://serv1.ist.psu.edu:8080/viewdoc/summary;jsessionid=CBC0A80E61E800DE518520F9469B2FD1?doi=10.1.1.96.7652
Pennock, D. M., Lawrence, S., & Giles, C. L. (2000). Collaborative Filtering by Personality Diagnosis : A Hybrid Memory- and Model-Based Approach, 473–480.
Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2002). Incremental singular value decomposition algorithms for highly scalable recommender systems. Fifth International Conference on Computer and Information Science, 27–28.
Sarwar, B. M., Karypis, G., Konstan, J. a, & Riedl, J. T. (2000). Application of dimensionality reduction in recommender systems: a case study. In ACM WebKDD Workshop, 67, 12. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.744
Shardanand, U., & Maes, P. (1995). Social information filtering. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI ’95, 210–217. http://doi.org/10.1145/223904.223931
Yang, X., Guo, Y., Liu, Y., & Steck, H. (2014). A survey of collaborative filtering based social recommender systems. Computer Communications, 41, 1–10. http://doi.org/10.1016/j.comcom.2013.06.009
Zhang, X., Edwards, J., & Harding, J. (2007). Personalised online sales using web usage data mining, 58, 772–782. http://doi.org/10.1016/j.compind.2007.02.004
Zou, T., Wang, Y., Wei, X., Li, Z., & Yang, G. (2014). An effective collaborative filtering via enhanced similarity and probability interval prediction. Intelligent Automation & Soft Computing, 20(4), 555–566.
DOI: http://dx.doi.org/10.4301/S1807-17752016000300008
Copyright (c) 2016 Journal of Information Systems and Technology Management