Evaluation of a process for the Experimental Development of Data Mining, AI and Data Science applications aligned with the Strategic Planning
Abstract
Keywords
Full Text:
PDFReferences
Basili, V. R. (1996, March). The role of experimentation in software engineering: past, current, and future. In Proceedings of IEEE 18th International Conference on Software Engineering (pp. 442-449). IEEE.
Basili, V., Heidrich, J., Lindvall, M., Munch, J., Regardie, M., & Trendowicz, A. (2007, September). GQM+Strategies – Aligning Business Strategies with Software Measurement. In First international symposium on empirical software engineering and measurement (ESEM 2007) (pp. 488-490). IEEE.
Basili, V. R., Lindvall, M., Regardie, M., Seaman, C., Heidrich, J., Münch, J., ... & Trendowicz, A. (2010). Linking software development and business strategy through measurement. Computer, 43(4), 57-65.
V. Basili, A. Trendowicz, M. Kowalczyk, J. Heidrich, C. Seaman, J. Münch, D. Rombach. (2014). Aligning Organizations Through Measurement: The GQM+Strategies Approach. Springer Publishing Company, Incorporated.
Berry, M. J., & Linoff, G. S. (2004). Data mining techniques: for marketing, sales, and customer relationship management. John Wiley & Sons.
Bock, C., Gumbsch, T., Moor, M., Rieck, B., Roqueiro, D., & Borgwardt, K. (2018). Association mapping in biomedical time series via statistically significant shapelet mining. Bioinformatics, 34(13), i438-i446.
Bosch‐Sijtsema, P., & Bosch, J. (2015). User involvement throughout the innovation process in high‐tech industries. Journal of Product Innovation Management, 32(5), 793-807.
Botelho¹, F. R., & Filho, E. R. (2014). Conceituando o termo business intelligence: origem e principais objetivos. Sistemas, Cibernética e Informática, vol. 11, n.º 11, pp. 55–60.
Cabena, P., Hadjinian, P., Stadler, R., Verhees, J., & Zanasi, A. (1998). Discovering data mining: from concept to implementation. Prentice-Hall, Inc.
Cheng, H., Lu, Y. C., & Sheu, C. (2009). An ontology-based business intelligence application in a financial knowledge management system. Expert Systems with Applications, 36(2), 3614-3622.
Cios, K. J., Teresinska, A., Konieczna, S., Potocka, J., & Sharma, S. (2000). Diagnosing myocardial perfusion from PECT bull’s-eye maps-A knowledge discovery approach. IEEE Engineering in Medicine and Biology Magazine, 19(4), 17-25.
Clancy, T. (1995). The standish group report. Chaos report.
Colaço Júnior, Methanias, de Fátima Menezes, M., Corumba, D., Mendonça, M., & Santos, B. S. (2015). Do software engineers have preferred representational systems?. Journal of Research and Practice in Information Technology, 47(1), 23-46.
Colaço Júnior, M. (2018). Vocabulário e Definição de Estudos Experimentais [Material da Disciplina de Engenharia de Software Experimental]. Mestrado em Ciência da Computação, Universidade Federal de Sergipe, São Cristóvão, Sergipe.
Colaço Júnior, M. ; CRUZ, R. F. ; LIMA, A. S. (2019). Proposta e Avaliação de um Processo para o Desenvolvimento de Aplicações de Business Intelligence Dirigido à Estratégia. In: International Conference on Information Systems and Technology Management, 2019, São Paulo. ContecSI.
Côrte-Real, N., Oliveira, T., & Ruivo, P. (2017). Assessing business value of Big Data Analytics in European firms. Journal of Business Research, 70, 379-390.
Costa, J. K. G., Santos, I. P. O., Nascimento, A. V. R., & Júnior, M. C. (2015, May). Experimentation at Industrial Setting to Improve the Effectiveness of the ETL Procedures Implementation in a Business Intelligence Environment. In SBSI (pp. 459-466).
Costa, J. K., Santos, I. P., junior, M. C., & Nascimento, A. V. (2016, May). An Experiment in an Industrial Business Intelligence environment to improve data loads maintenance. In Proceedings of the XII Brazilian Symposium on Information Systems on Brazilian Symposium on Information Systems: Information Systems in the Cloud Computing Era-Volume 1 (pp. 534-541).
Covões, T. F. (2010). Seleção de atributos via agrupamento (Doctoral dissertation, Universidade de São Paulo).
CRISP-DM. (2003). Cross Industry Standard Process for Data Mining 1.0: Step by Step Data Mining Guide. [Online] 20 de Junho de 2019. http://www.crisp-dm.org/.
Cruz, R. F.; Colaço Júnior, Methanias; Gois, V. M. (2022). Quão experimentais e estratégicas são as aplicações de Business Intelligence (BI) e Data Mining? Revista Ibero-Americana de Estratégia.
Demo, P. A. e Silva, R. (2012). Pesquisa e Informação Qualitativa 5ª edição. . São Paulo :s.n..
Dittrich, Y., Nørbjerg, J., Tell, P., & Bendix, L. (2018, May). Researching cooperation and communication in continuous software engineering. In 2018 IEEE/ACM 11th International Workshop on Cooperative and Human Aspects of Software Engineering (CHASE) (pp. 87-90). IEEE.
Endres, A., & Rombach, H. D. (2003). A handbook of software and systems engineering: Empirical observations, laws, and theories. Pearson Education.
Fagerholm, F., Guinea, A. S., Mäenpää, H., & Münch, J. (2017). The RIGHT model for continuous experimentation. Journal of Systems and Software, 123, 292-305.
Fayyad, U. M., Piatetsky-Shapiro, G., & Smyth, P. (1996, August). Knowledge Discovery and Data Mining: Towards a Unifying Framework. In KDD (Vol. 96, pp. 82-88).
Gain, U., & Hotti, V. (2021, February). Low-code AutoML-augmented Data Pipeline–A Review and Experiments. In Journal of Physics: Conference Series (Vol. 1828, No. 1, p. 012015). IOP Publishing.
Goldratt, E. M., & Cox, J. (2016). The goal: a process of ongoing improvement. Routledge.
Goldschmidt, R., & Passos, E. (2005). Data mining: um guia prático. Gulf Professional Publishing.
Hohnhold, H., O'Brien, D., & Tang, D. (2015, August). Focusing on the long-term: It's good for users and business. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1849-1858).
IBM. (2005). Analytics solutions unified method. ftp://ftp.software.ibm.com/software/data/sw-library/services/ASUM.pdf.
Kluger, A. N., & Tikochinsky, J. (2001). The error of accepting the" theoretical" null hypothesis: the rise, fall, and resurrection of commonsense hypotheses in psychology. Psychological bulletin, 127(3), 408.
Kohavi, R., Longbotham, R., Sommerfield, D., & Henne, R. M. (2009). Controlled experiments on the web: survey and practical guide. Data mining and knowledge discovery, 18(1), 140-181.
Kohavi, R., Deng, A., Frasca, B., Walker, T., Xu, Y., & Pohlmann, N. (2013, August). Online controlled experiments at large scale. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1168-1176).
Kohavi, R., Deng, A., Longbotham, R., & Xu, Y. (2014, August). Seven rules of thumb for web site experimenters. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1857-1866).
Kohavi, R., & Longbotham, R. (2017). Online Controlled Experiments and A/B Testing. Encyclopedia of machine learning and data mining, 7(8), 922-929.
Kubina, M., Varmus, M., & Kubinova, I. (2015). Use of big data for competitive advantage of company. Procedia Economics and Finance, 26, 561-565.
Kurgan, L. A., & Musilek, P. (2006). A survey of knowledge discovery and data mining process models. Knowledge Engineering Review, 21(1), 1-24.
Ławrynowicz, A., & Potoniec, J. (2014). Pattern based feature construction in semantic data mining. International Journal on Semantic Web and Information Systems (IJSWIS), 10(1), 27-65.
Lima, Adriano; Colaço Júnior, Methanias; Nascimento, Andre Vinicius RP. (2017). Um Survey com Empresas Brasileiras acerca da Utilização de Business Intelligence (BI) e um diagnóstico sobre a infraestrutura e metodologias associadas. Conferência Ibero-Americana de Engenharia de Software – Trilha de Engenharia de Software Experimental.
Ma, L., & Fan, S. (2017). CURE-SMOTE algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests. BMC bioinformatics, 18(1), 1-18.
Maione, C. (2020). Balanceamento de dados com base em oversampling em dados transformados. 2020. 135 f. Tese (Doutorado em Ciência da Computação em Rede) - Universidade Federal de Goiás, Goiânia.
Mandić, V., Basili, V., Harjumaa, L., Oivo, M., & Markkula, J. (2010, September). Utilizing GQM+ Strategies for business value analysis: An approach for evaluating business goals. In Proceedings of the 2010 ACM-IEEE International Symposium on Empirical Software Engineering and Measurement (pp. 1-10).
Martin, R. C. (2002). Agile software development: principles, patterns, and practices. Prentice Hall.
Martínez-Plumed, F., Contreras-Ochando, L., Ferri, C., Orallo, J. H., Kull, M., Lachiche, N., ... & Flach, P. A. (2019). CRISP-DM twenty years later: From data mining processes to data science trajectories. IEEE Transactions on Knowledge and Data Engineering.
Olsson, H. H., & Bosch, J. (2014). The HYPEX model: from opinions to data-driven software development. In Continuous software engineering (pp. 155-164). Springer, Cham.
Orne, M. T. (1962). Sobre a psicologia social da experiência psicológica: Com referência particular para exigir características e suas implicações.
Pinto, P. (2015). Introdução à Análise Estatística-Vol 2 (Vol. 2). Sílabas & Desafios.
Rodríguez, P., Haghighatkhah, A., Lwakatare, L. E., Teppola, S., Suomalainen, T., Eskeli, J., ... & Oivo, M. (2017). Continuous deployment of software intensive products and services: A systematic mapping study. Journal of Systems and Software, 123, 263-291.
Roy, R. K. (2001). Design of experiments using the Taguchi approach: 16 steps to product and process improvement. John Wiley & Sons.
Santos, A. C. M., Colaço Junior, Methanias, & de Carvalho Andrade, E. (2020). Multimedia resources as a support for requirements engineering and software maintenance. In Journal of Software: Evolution and Process.
Santos, B. S., Junior, M. C., & de Souza, J. G. (2018, June). An Experimental Evaluation of the NeuroMessenger: A Collaborative Tool to Improve the Empathy of Text Interactions. In 2018 IEEE Symposium on Computers and Communications (ISCC) (pp. 00573-00579). IEEE.
SAS. (2005). Semma data mining methodology. http://www.sas.com/technologies/analytics/datamining/miner/semma.html.
Schäfer, F., Zeiselmair, C., Becker, J., & Otten, H. (2018, November). Synthesizing CRISP-DM and quality management: A data mining approach for production processes. In 2018 IEEE International Conference on Technology Management, Operations and Decisions (ICTMOD) (pp. 190-195). IEEE.
Sedkaoui, S. (2018). Statistical and Computational Needs for Big Data Challenges. In Big Data Analytics in HIV/AIDS Research (pp. 21-53). IGI Global.
Sjøberg, D. I., Hannay, J. E., Hansen, O., Kampenes, V. B., Karahasanovic, A., Liborg, N. K., & Rekdal, A. C. (2005). A survey of controlled experiments in software engineering. IEEE transactions on software engineering, 31(9), 733-753.
Sharma, S., Osei-Bryson, K. M., & Kasper, G. M. (2012). Evaluation of an integrated Knowledge Discovery and Data Mining process model. In Expert Systems with Applications, 39(13), 11335-11348.
Singh, B. (2016). The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses. Bangalore Vol. 11, Ed. 2
Sculley, D., Snoek, J., Rahimi, A., Wiltschko, A. (2018). Winner’s curse? On pace, progress, and empirical rigor. In Proceedings of the 6th International Conference on Learning Representations, Workshop Track.
Svatá, V. (2019). COBIT 2019: Should We Care? 9th International Conference on Advanced Computer Information Technologies (ACIT), pp. 329-332.
Vasconcelos, N., Júnior, M. C., Almeida, T., & da Silva, V. M. (2019). Comparative Analysis of Data Mining Algorithms Applied to the Context of School Dropout. In FedCSIS (Communication Papers) (pp. 3-10).
Yin, R. (2015). Estudo de Caso - 5.Ed.: Planejamento e Métodos. s.l. : BOOKMAN.
DOI: http://dx.doi.org/10.4301/S1807-1775202219018
Copyright (c) 2022 Journal of Information Systems and Technology Management