Social Sciences and Humanities on Big Data: a Bibliometric Analysis

Gastón Becerra, Cristian Ratovicius

Abstract


Purpose: The purpose of this paper is to provide a comprehensive bibliometric review of social science, psychology, and humanities literature focusing on big data. Methods: Production and authorship trends, topics and areas as well as citations were analyzed by means of conducting a bibliometric analysis of a corpus of 5,500 Scopus articles published from 2010 to 2020. Findings: Analysis revealed similarities and differences among social science, psychology, and humanities literature in terms of publication, framing, and referencing trends as compared with the general big data literature: both fields show a steady increase, although the increase rate slowed down as from 2015; text production of both specific and general fields is led by just a few countries, with the USA and China being on top of the ranking; single authorship has been decreasing in both fields; the specificity of big data framing, in social sciences and humanities, has been identified with a critical view that surpass the ethical considerations, to include the social construction of datasets, the political and ideological uses of big data, and the discussion of its philosophical and epistemological foundations. Value: To the best of our knowledge, this is the first study to provide a comprehensive view on social sciences and humanities big data bibliometrics while providing context to compare results.

Keywords


Big data, social sciences, humanities, bibliometric analysis, citation analysis

Full Text:

PDF

References


Ahmad, I., Ahmed, G., Shah, S. A. A., & Ahmed, E. (2020). A decade of big data literature: analysis of trends in light of bibliometrics. The Journal of Supercomputing, 76(5), 3555–3571. https://doi.org/10.1007/s11227-018-2714-x

Anderson, C. (2008). The end of theory. The data deluge makes the scientific method obsolete. Wired. https://www.wired.com/2008/06/pb-theory/

Batty, M. (2013). Big data, smart cities and city planning. Dialogues in Human Geography, 3(3), 274–279. https://doi.org/10.1177/2043820613513390

Becerra, G. (2018). Interpelaciones entre el Big data y la Teoría de los sistemas sociales. Propuestas para un programa de investigación. Hipertextos, 6(9), 41–62. http://revistahipertextos.org/ediciones/hipertextos-no-9/

Beer, D. (2016). How should we do the history of Big Data? Big Data & Society, 3(1), 205395171664613. https://doi.org/10.1177/2053951716646135

Belmonte, J. L., Segura-Robles, A., Moreno-Guerrero, A. J., & Parra-González, M. E. (2020). Machine learning and big data in the impact literature. A bibliometric review with scientific mapping in web of science. Symmetry, 12(4). https://doi.org/10.3390/SYM12040495

boyd, danah, & Crawford, K. (2012). Critical Questions for Big Data. Information, Communication & Society, 15(5), 662–679.

Brower, R. L., Jones, T. B., Osborne-Lampkin, L., Hu, S., & Park-Gaghan, T. J. (2019). Big Qual: Defining and Debating Qualitative Inquiry for Large Data Sets. International Journal of Qualitative Methods, 18, 1–10. https://doi.org/10.1177/1609406919880692

Burrows, R., & Savage, M. (2014). After the crisis? Big Data and the methodological challenges of empirical sociology. Big Data & Society, 1(1), 205395171454028. https://doi.org/10.1177/2053951714540280

Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 19(2), 171–209. https://doi.org/10.1007/s11036-013-0489-0

Colleoni, E., Rozza, A., & Arvidsson, A. (2014). Echo Chamber or Public Sphere? Predicting Political Orientation and Measuring Political Homophily in Twitter Using Big Data. Journal of Communication, 64(2), 317–332. https://doi.org/10.1111/jcom.12084

Davidson, E., Edwards, R., Jamieson, L., & Weller, S. (2019). Big data, qualitative style: a breadth-and-depth method for working with large amounts of secondary qualitative data. Quality and Quantity, 53(1), 363–376. https://doi.org/10.1007/s11135-018-0757-y

Dijck, J. van. (2014). Datafication, dataism and dataveillance: Big data between scientific paradigm and ideology. Surveillance and Society, 12(2), 197–208.

Ebrahim, N. A., Salehi, H., Embi, M. A., Tanha, F. H., Gholizadeh, H., & Motahar, S. M. (2014). Visibility and citation impact. International Education Studies, 7(4), 120–125. https://doi.org/10.5539/ies.v7n4p120

Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137–144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007

Gieseking, J. J. (2018). Size Matters to Lesbians, Too: Queer Feminist Interventions into the Scale of Big Data. Professional Geographer, 70(1), 150–156. https://doi.org/10.1080/00330124.2017.1326084

Gitelman, L. (2013). "Raw Data" Is an Oxymoron. The MIT Press. https://doi.org/10.1080/1369118X.2014.920042

Halavais, A. (2015). Bigger sociological imaginations: framing big social data theory and methods. Information Communication and Society, 18(5), 583–594. https://doi.org/10.1080/1369118X.2015.1008543

Halford, S., & Savage, M. (2017). Speaking Sociologically with Big Data: Symphonic Social Science and the Future for Big Data Research. Sociology, 51(6), 1132–1148. https://doi.org/10.1177/0038038517698639

Hashem, I. A. T., Chang, V., Anuar, N. B., Adewole, K., Yaqoob, I., Gani, A., Ahmed, E., & Chiroma, H. (2016). The role of big data in smart city. International Journal of Information Management, 36(5), 748–758. https://doi.org/10.1016/j.ijinfomgt.2016.05.002

Hill, R. L., Kennedy, H., & Gerrard, Y. (2016). Visualizing Junk:Big Data Visualizations and the Need for Feminist Data Studies. Journal of Communication Inquiry, 40(4), 331–350. https://doi.org/10.1177/0196859916666041

Kalantari, A., Kamsin, A., Kamaruddin, H. S., Ale Ebrahim, N., Gani, A., Ebrahimi, A., & Shamshirband, S. (2017). A bibliometric approach to tracking big data research trends. Journal of Big Data, 4(1), 1–18. https://doi.org/10.1186/s40537-017-0088-1

Kitchin, R. (2014). Big Data, new epistemologies and paradigm shifts. Big Data & Society, 1(1). http://journals.sagepub.com/doi/10.1177/2053951714528481

Kramer, A. D. I., Guillory, J. E., & Hancock, J. T. (2014). Experimental evidence of massive-scale emotional contagion through social networks. Proceedings of the National Academy of Sciences, 111(24), 8788–8790. https://doi.org/10.1073/pnas.1320040111

Laney, D. (2001). 3D Data Management: Controlling Data Volume, Velocity, and Variety (No. 2001; Vol. 949). META Group. https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf

Lazer, D., Kennedy, R., King, G., & Vespignani, A. (2014). The Parable of Google Fly: Traps in Big Data Analysis. Science, 343(March), 1203–1205. http://gking.harvard.edu/files/gking/files/0314policyforumff.pdf

Lazer, D., Pentland, A., Watts, D. J., Aral, S., Contractor, N., Freelon, D., Gonzalez-bailon, S., & King, G. (2020). Computational social science: Obstacles and opportunities. Science, 369(6507), 13–16. https://doi.org/10.1126/science.aaz8170

Leonelli, S. (2016). Locating ethics in data science: Responsibility and accountability in global and distributed knowledge production systems. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2083). https://doi.org/10.1098/rsta.2016.0122

Liang, T. P., & Liu, Y. H. (2018). Research Landscape of Business Intelligence and Big Data analytics: A bibliometrics study. Expert Systems with Applications, 111(128), 2–10. https://doi.org/10.1016/j.eswa.2018.05.018

Lim, C., Kim, K. J., & Maglio, P. P. (2018). Smart cities with big data: Reference models, challenges, and considerations. Cities, 82(April), 86–99. https://doi.org/10.1016/j.cities.2018.04.011

Liu, X., Sun, R., Wang, S., & Wu, Y. J. (2019). The research landscape of big data: a bibliometric analysis. Library Hi Tech, 38(2), 367–384. https://doi.org/10.1108/LHT-01-2019-0024

Mahrenbach, L. C., Mayer, K., & Pfeffer, J. (2018). Policy visions of big data: views from the Global South. Third World Quarterly, 39(10), 1861–1882. https://doi.org/10.1080/01436597.2018.1509700

Mayer-Schonberger, V., & Cukier, K. (2013). Big data. A revolution that whill transform how we live, work, and think. Eamon Dolan/Houghton Mifflin Harcourt.

McCarthy, M. T. (2016). The big data divide and its consequences. Sociology Compass, 10(12), 1131–1140. https://doi.org/10.1111/soc4.12436

Medeiros, M. M. de, Maçada, A. C. G., & Freitas Junior, J. C. da S. (2020). The effect of data strategy on competitive advantage. Bottom Line, 33(2), 201–216. https://doi.org/10.1108/BL-12-2019-0131

Metcalf, J., & Crawford, K. (2016). Where are human subjects in Big Data research? The emerging ethics divide. Big Data and Society, 3(1), 1–14. https://doi.org/10.1177/2053951716650211

Metcalf, J., Keller, E. F., & Boyd, D. (2016). Perspectives on Big Data, Ethics, and Society. https://bdes.datasociety.net/council-output/perspectives-on-big-data-ethics-and-society/

Mützel, S. (2015). Facing Big Data: Making sociology relevant. Big Data & Society, 2(2), 205395171559917. https://doi.org/10.1177/2053951715599179

Newman, M. E. J. (2006). Finding community structure in networks using the eigenvectors of matrices. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 74(3), 1–19. https://doi.org/10.1103/PhysRevE.74.036104

Ostrom, A. L., Parasuraman, A., Bowen, D. E., Patrício, L., & Voss, C. A. (2015). Service Research Priorities in a Rapidly Changing Context. Journal of Service Research, 18(2), 127–159. https://doi.org/10.1177/1094670515576315

Ponomariov, B., & Boardman, C. (2016). What is co-authorship? Scientometrics, 109(3), 1939–1963. https://doi.org/10.1007/s11192-016-2127-7

Roberts, M. E., Stewart, B. M., & Tingley, D. (2019). Stm: An R package for structural topic models. Journal of Statistical Software, 91. https://doi.org/10.18637/jss.v091.i02

Sadin, É. (2018). La inteligencia artificial o el desafío del siglo. Anatomía de un antihumanismo radical. Caja Negra.

Subramanyam, K. (1983). Bibliometric studies of research collaboration: A review. Journal of Information Science, 6(1), 33–38. https://doi.org/10.1177/016555158300600105

Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-Based Methods for Sentiment Analysis. Computational Linguistics, 37(2), 267–307. https://doi.org/10.1162/COLI_a_00049

Team R Core. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/

Weinhardt, M. (2020). Ethical issues in the use of big data for social research. Historical Social Research, 45, 342–368. https://doi.org/10.12759/hsr.45.2020.3.342-368

Xindong Wu, Xingquan Zhu, Gong-Qing Wu, & Wei Ding. (2014). Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 26(1), 97–107. https://doi.org/10.1109/TKDE.2013.109

Zhang, Y., Huang, Y., Porter, A. L., Zhang, G., & Lu, J. (2019). Discovering and forecasting interactions in big data research: A learning-enhanced bibliometric study. Technological Forecasting and Social Change, 146(April), 795–807. https://doi.org/10.1016/j.techfore.2018.06.007

Zuboff, S. (2015). Big other: Surveillance capitalism and the prospects of an information civilization. Journal of Information Technology, 30(1), 75–89. https://doi.org/10.1057/jit.2015.5




DOI: http://dx.doi.org/10.4301/S1807-1775202219011

Copyright (c) 2022 Journal of Information Systems and Technology Management

Licensed under