Social Sciences and Humanities on Big Data: a Bibliometric Analysis
Abstract
Keywords
Full Text:
PDFReferences
Ahmad, I., Ahmed, G., Shah, S. A. A., & Ahmed, E. (2020). A decade of big data literature: analysis of trends in light of bibliometrics. The Journal of Supercomputing, 76(5), 3555–3571. https://doi.org/10.1007/s11227-018-2714-x
Anderson, C. (2008). The end of theory. The data deluge makes the scientific method obsolete. Wired. https://www.wired.com/2008/06/pb-theory/
Batty, M. (2013). Big data, smart cities and city planning. Dialogues in Human Geography, 3(3), 274–279. https://doi.org/10.1177/2043820613513390
Becerra, G. (2018). Interpelaciones entre el Big data y la Teoría de los sistemas sociales. Propuestas para un programa de investigación. Hipertextos, 6(9), 41–62. http://revistahipertextos.org/ediciones/hipertextos-no-9/
Beer, D. (2016). How should we do the history of Big Data? Big Data & Society, 3(1), 205395171664613. https://doi.org/10.1177/2053951716646135
Belmonte, J. L., Segura-Robles, A., Moreno-Guerrero, A. J., & Parra-González, M. E. (2020). Machine learning and big data in the impact literature. A bibliometric review with scientific mapping in web of science. Symmetry, 12(4). https://doi.org/10.3390/SYM12040495
boyd, danah, & Crawford, K. (2012). Critical Questions for Big Data. Information, Communication & Society, 15(5), 662–679.
Brower, R. L., Jones, T. B., Osborne-Lampkin, L., Hu, S., & Park-Gaghan, T. J. (2019). Big Qual: Defining and Debating Qualitative Inquiry for Large Data Sets. International Journal of Qualitative Methods, 18, 1–10. https://doi.org/10.1177/1609406919880692
Burrows, R., & Savage, M. (2014). After the crisis? Big Data and the methodological challenges of empirical sociology. Big Data & Society, 1(1), 205395171454028. https://doi.org/10.1177/2053951714540280
Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 19(2), 171–209. https://doi.org/10.1007/s11036-013-0489-0
Colleoni, E., Rozza, A., & Arvidsson, A. (2014). Echo Chamber or Public Sphere? Predicting Political Orientation and Measuring Political Homophily in Twitter Using Big Data. Journal of Communication, 64(2), 317–332. https://doi.org/10.1111/jcom.12084
Davidson, E., Edwards, R., Jamieson, L., & Weller, S. (2019). Big data, qualitative style: a breadth-and-depth method for working with large amounts of secondary qualitative data. Quality and Quantity, 53(1), 363–376. https://doi.org/10.1007/s11135-018-0757-y
Dijck, J. van. (2014). Datafication, dataism and dataveillance: Big data between scientific paradigm and ideology. Surveillance and Society, 12(2), 197–208.
Ebrahim, N. A., Salehi, H., Embi, M. A., Tanha, F. H., Gholizadeh, H., & Motahar, S. M. (2014). Visibility and citation impact. International Education Studies, 7(4), 120–125. https://doi.org/10.5539/ies.v7n4p120
Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137–144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007
Gieseking, J. J. (2018). Size Matters to Lesbians, Too: Queer Feminist Interventions into the Scale of Big Data. Professional Geographer, 70(1), 150–156. https://doi.org/10.1080/00330124.2017.1326084
Gitelman, L. (2013). "Raw Data" Is an Oxymoron. The MIT Press. https://doi.org/10.1080/1369118X.2014.920042
Halavais, A. (2015). Bigger sociological imaginations: framing big social data theory and methods. Information Communication and Society, 18(5), 583–594. https://doi.org/10.1080/1369118X.2015.1008543
Halford, S., & Savage, M. (2017). Speaking Sociologically with Big Data: Symphonic Social Science and the Future for Big Data Research. Sociology, 51(6), 1132–1148. https://doi.org/10.1177/0038038517698639
Hashem, I. A. T., Chang, V., Anuar, N. B., Adewole, K., Yaqoob, I., Gani, A., Ahmed, E., & Chiroma, H. (2016). The role of big data in smart city. International Journal of Information Management, 36(5), 748–758. https://doi.org/10.1016/j.ijinfomgt.2016.05.002
Hill, R. L., Kennedy, H., & Gerrard, Y. (2016). Visualizing Junk:Big Data Visualizations and the Need for Feminist Data Studies. Journal of Communication Inquiry, 40(4), 331–350. https://doi.org/10.1177/0196859916666041
Kalantari, A., Kamsin, A., Kamaruddin, H. S., Ale Ebrahim, N., Gani, A., Ebrahimi, A., & Shamshirband, S. (2017). A bibliometric approach to tracking big data research trends. Journal of Big Data, 4(1), 1–18. https://doi.org/10.1186/s40537-017-0088-1
Kitchin, R. (2014). Big Data, new epistemologies and paradigm shifts. Big Data & Society, 1(1). http://journals.sagepub.com/doi/10.1177/2053951714528481
Kramer, A. D. I., Guillory, J. E., & Hancock, J. T. (2014). Experimental evidence of massive-scale emotional contagion through social networks. Proceedings of the National Academy of Sciences, 111(24), 8788–8790. https://doi.org/10.1073/pnas.1320040111
Laney, D. (2001). 3D Data Management: Controlling Data Volume, Velocity, and Variety (No. 2001; Vol. 949). META Group. https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
Lazer, D., Kennedy, R., King, G., & Vespignani, A. (2014). The Parable of Google Fly: Traps in Big Data Analysis. Science, 343(March), 1203–1205. http://gking.harvard.edu/files/gking/files/0314policyforumff.pdf
Lazer, D., Pentland, A., Watts, D. J., Aral, S., Contractor, N., Freelon, D., Gonzalez-bailon, S., & King, G. (2020). Computational social science: Obstacles and opportunities. Science, 369(6507), 13–16. https://doi.org/10.1126/science.aaz8170
Leonelli, S. (2016). Locating ethics in data science: Responsibility and accountability in global and distributed knowledge production systems. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2083). https://doi.org/10.1098/rsta.2016.0122
Liang, T. P., & Liu, Y. H. (2018). Research Landscape of Business Intelligence and Big Data analytics: A bibliometrics study. Expert Systems with Applications, 111(128), 2–10. https://doi.org/10.1016/j.eswa.2018.05.018
Lim, C., Kim, K. J., & Maglio, P. P. (2018). Smart cities with big data: Reference models, challenges, and considerations. Cities, 82(April), 86–99. https://doi.org/10.1016/j.cities.2018.04.011
Liu, X., Sun, R., Wang, S., & Wu, Y. J. (2019). The research landscape of big data: a bibliometric analysis. Library Hi Tech, 38(2), 367–384. https://doi.org/10.1108/LHT-01-2019-0024
Mahrenbach, L. C., Mayer, K., & Pfeffer, J. (2018). Policy visions of big data: views from the Global South. Third World Quarterly, 39(10), 1861–1882. https://doi.org/10.1080/01436597.2018.1509700
Mayer-Schonberger, V., & Cukier, K. (2013). Big data. A revolution that whill transform how we live, work, and think. Eamon Dolan/Houghton Mifflin Harcourt.
McCarthy, M. T. (2016). The big data divide and its consequences. Sociology Compass, 10(12), 1131–1140. https://doi.org/10.1111/soc4.12436
Medeiros, M. M. de, Maçada, A. C. G., & Freitas Junior, J. C. da S. (2020). The effect of data strategy on competitive advantage. Bottom Line, 33(2), 201–216. https://doi.org/10.1108/BL-12-2019-0131
Metcalf, J., & Crawford, K. (2016). Where are human subjects in Big Data research? The emerging ethics divide. Big Data and Society, 3(1), 1–14. https://doi.org/10.1177/2053951716650211
Metcalf, J., Keller, E. F., & Boyd, D. (2016). Perspectives on Big Data, Ethics, and Society. https://bdes.datasociety.net/council-output/perspectives-on-big-data-ethics-and-society/
Mützel, S. (2015). Facing Big Data: Making sociology relevant. Big Data & Society, 2(2), 205395171559917. https://doi.org/10.1177/2053951715599179
Newman, M. E. J. (2006). Finding community structure in networks using the eigenvectors of matrices. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 74(3), 1–19. https://doi.org/10.1103/PhysRevE.74.036104
Ostrom, A. L., Parasuraman, A., Bowen, D. E., Patrício, L., & Voss, C. A. (2015). Service Research Priorities in a Rapidly Changing Context. Journal of Service Research, 18(2), 127–159. https://doi.org/10.1177/1094670515576315
Ponomariov, B., & Boardman, C. (2016). What is co-authorship? Scientometrics, 109(3), 1939–1963. https://doi.org/10.1007/s11192-016-2127-7
Roberts, M. E., Stewart, B. M., & Tingley, D. (2019). Stm: An R package for structural topic models. Journal of Statistical Software, 91. https://doi.org/10.18637/jss.v091.i02
Sadin, É. (2018). La inteligencia artificial o el desafío del siglo. Anatomía de un antihumanismo radical. Caja Negra.
Subramanyam, K. (1983). Bibliometric studies of research collaboration: A review. Journal of Information Science, 6(1), 33–38. https://doi.org/10.1177/016555158300600105
Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-Based Methods for Sentiment Analysis. Computational Linguistics, 37(2), 267–307. https://doi.org/10.1162/COLI_a_00049
Team R Core. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/
Weinhardt, M. (2020). Ethical issues in the use of big data for social research. Historical Social Research, 45, 342–368. https://doi.org/10.12759/hsr.45.2020.3.342-368
Xindong Wu, Xingquan Zhu, Gong-Qing Wu, & Wei Ding. (2014). Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 26(1), 97–107. https://doi.org/10.1109/TKDE.2013.109
Zhang, Y., Huang, Y., Porter, A. L., Zhang, G., & Lu, J. (2019). Discovering and forecasting interactions in big data research: A learning-enhanced bibliometric study. Technological Forecasting and Social Change, 146(April), 795–807. https://doi.org/10.1016/j.techfore.2018.06.007
Zuboff, S. (2015). Big other: Surveillance capitalism and the prospects of an information civilization. Journal of Information Technology, 30(1), 75–89. https://doi.org/10.1057/jit.2015.5
DOI: http://dx.doi.org/10.4301/S1807-1775202219011
Copyright (c) 2022 Journal of Information Systems and Technology Management