Cash Management Policies by Evolutionary Models: a Comparison Using the Miller-Orr Model

Marcelo Botelho da Costa Moraes, Marcelo Seido Nagano

Abstract


This work aims to apply genetic algorithms (GA) and particle swarm optimization (PSO) to managing cash balance, comparing performance results between computational models and the Miller-Orr model. Thus, the paper proposes the application of computational evolutionary models to minimize the total cost of cash balance maintenance, obtaining the parameters for a cash management policy, using assumptions presented in the literature, considering the cost of maintenance and opportunity for cost of cash. For such, we developed computational experiments from cash flows simulated to implement the algorithms. For a control purpose, an algorithm has been developed that uses the Miller-Orr model defining the lower bound parameter, which is not obtained by the original model. The results indicate that evolutionary algorithms present better results than the Miller-Orr model, with prevalence for PSO algorithm in results.

Keywords


Cash Flow; Cash Balance; Treasury; Genetic Algorithms; Particle Swarm Optimization.

Full Text:

PDF

References


Baccarin, S. (2002). Optimal impulse control for cash management with quadratic holding-penalty costs. Decision in Economics and Finance, 25, 19-32.

Baccarin, S. (2009). Optimal impulse control for a multidimensional cash management system with generalized cost functions. European Journal of Operational Research, 196, 198-206.

Baumol, W. (1952). The transaction demand for cash-an inventory theoretic approach. The Quarterly Journal of Economics, 66, 545-556.

Brealey, R. A. & Myers, S. C. (2005). Princípios de Finanças Empresariais. Lisboa: McGraw-Hill, 5a. Ed., 1240 p..

Chen, Y.-P. & Jiang, P. (2010). Analysis of particle interaction in particle swarm optimization. Theoretical Computer Science, 411, 2101-2115.

Eberhart, R. C. & Kennedy, J. (1995). A new optimizer using particle swarm theory. Sixth international symposium on micro machine and human science, Nagoya, Japão.

Fogel, D. B. (2000). What is evolutionary computation? IEEE Spectrum, 26-32.

Gormley, F. M. & Meade, N. (2007). The utility of cash flow forecasts in the management of corporate cash balances. European Journal of Operational Research, 182, 923-935.

Hinderer, K. & Waldmann, K.-H. (2001). Cash management in randomly varying environment. European Journal of Operational Research, 130, 468-485.

Liu, B & Xin, C. (2008). An Online Model for Managing Cash: An Alternative Approach to the Miller-Orr Model. Fourth International Conference on Natural Computation – IEEE Computer Society.

Martínez, M., García-Nieto, S., Sanchis, J. & Blasco, X. (2009). Genetic algorithms optimization for normalized normal constraint method under Pareto construction. Advances in Engineering Software, 40, 260-267.

Milbourne, R. (1983). Optimal Money Holding under Uncertainty. International Economic Review, 24, 685-698.

Miller, M. & Orr, D. (1966). A model of the demand for money by firms. The Quarterly Journal of Economics, 81, 413-435.

Moraes, M. B. C. & Nagano, M. S. (2011). Otimização do saldo de caixa com algoritmos genéticos: um estudo relacionando cruzamento e mutação no modelo de Miller e Orr. Revista Produção Online, 11, 399-417.

Opler, T.; Pinkowitz, L.; Stulz, R.; Williamson, R (1999). The determinants and implications of corporate cash holdings. Journal of Financial Economics, v. 52, p. 3-46.

Premachandra, I. M. (2004). A diffusion approximation model for managing cash in firms: An alternative approach to the Miller-Orr model. European Journal of Operational Research, 157, 218-226.

Rezende, S. O. (2005). Sistemas Inteligentes – Fundamentos e Aplicações. São Paulo: Ed. Manole, 525 p.

Ross, S. A., Westerfield, R. W. & Jaffe, J. F. (2002). Administração Financeira – Corporate Finance. São Paulo: Ed. Atlas, 776 p.

Slack, N.; Chambers, S., Harland, C.; Harrison, A. & Johnston, R. (1997). Administração da Produção. São Paulo: Ed. Atlas, 726 p.

Srinivasan, V. & Kim, Y. H. (1986). Deterministic Cash Flow Management: State of Art and Research Directions. OMEGA – International Journal of Management Sciences, 14, 145-166.

Tapiero, C. S. & Zuckerman, D. (1980). A Note on the Optimal Control of a Cash Balance Problem. Journal of Banking and Finance, 4, 345-352.

Tobin, J. (1956). The interest elasticity of the transaction demand for cash. The Review of Economic Statistics, 38, 241-247.

Tsai, S.-J., Sun, T.-Y., Liu, C.-C., Hsieh, S.-T., Wu, W.-C. & Chiu, S-Y. (2010). An improved multi-objective particle swarm optimizer for multi-objective problems. Expert Systems with Applications, 37, 5872-5886.

Volosov, K., Mitra, G., Spagnolo, F. & Carisma, C. L. (2005). Treasury Management Model with Foreign Exchange Exposure. Computational Optimization and Applications, 39, 179-207.

Yao, J.-S., Chen, M.-S., Lu, H.-F. (2006). A fuzzy stochastic single-period model for cash management. European Journal of Operational Research, 170, 72-90.




DOI: http://dx.doi.org/10.4301/s1807-17752013000300006

Copyright (c)

Licensed under